JOURNAL OF APPROXIMATION THEORY 23, 87-98 (1978)

On a Uniform Method for Integration, Differentiation and Inter-
polation with Applications to the Numerical Solution of a Class
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Using a method analogous to that given in [1], we establish elementary analytic-
al equalities giving rise to some useful applications; among them a method for
the numerical integration of some partial differential equations.

1

Let £2 be the rectangle [a, , a,] x [b,, b.], and
xi_——al—{-ih, yj:bl—J[‘jk,
h = (a, — a)/(S; + 1), k = (by — bp/(S: + D).
Each point (x*, y*) € Q2 divides 2 into four subdomains (rectangles):
Qi ={(x)ex<x*y<y¥, Q2={xrelx>x*y<y¥,
Q3 ={x,ex>x*y>y*,  Qf={(xpelx<x¥y>y*.
We shall denote also by £5; (x = 1, 2, 3, 4) the four rectangles analogous to

the above ones, obtained by dividing £2 by means of the point (x; , ;).
Finally, let

Al = (al » bl), Az = (az » bl)’ Aa = (az s bz), A4 = (01 ’ bz),
Xy = Xos = (x5, by), X3 = Xy = (x;, by),
Yii= Yy = (a1, ), Yoi = Yy = (a2, 3)), X = (x:, ),

H}a'(x, ) = H(x; — x) H(y; — »), (x,y)e 911‘]' s
Hi(x,y) = —H(x — x) H(y; — ),  (x,») e Q%,
H?J'(xa y) = H(x - xi)(y - yi)’ (x7 y) € Q?) ’

ng(x9 y) = _H(xl - x) H(y - yi)a (xa }’) € Q;i, ’
H being the usual Heaviside function, and ¢ € €7+5(£2).
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Then, using integration by parts, we have:

(@ forr>p,s>q:

(x: — )% (y; — V) e ot
J].n"‘ 7! Hii(x, y) oxTay’ dx dy

_ » (x; — x)p=e (y; — y)y-? ares—a-v-zg
= Z Z(, [ (p —a)! (@ — b)!  oxT—a1 gys—b-1 La

_ i [(xl — x)ﬂ—a 3r+s—q—a—2(p
(p _ d)' OxT—e-1 @ys—q—l Ya;

a=0
q ~ e —
- (¥; — )7 grts-r2p grs-r-t-tg .
IEO [ (q - b)' Oxr—p-1 ays_b—l ]XM- * [ oxT—-1 3}18—«—1 ]X“ 5
)
(b) forr=p,s =gq,
(x; — x)? (y; — y)r
fnl p! Jq. Hj(xy)apaqudy
D q -
= (x; — a)? (y; — by)? orta—et2g
- ago IZ;) p! q! Oxp—o-1 ayq-b—l (a, by)
v
_ i(x; — a))P® 0P 1p
b (p—a! oxrot (@, ») dy
-1 ,x; ( - — b )q—b pa—b-1
— Vi 1 @
bgo w (g—Dbl gt (x, by) dx + ff% o(x, y) dx dy. |
2

Consider now the polynomials

i x'z X -y
Py(x; — X, 3, — y) = Py(x, y) = Z Z a5, ¢ ) (s q! 2)

=0 ¢=0

b

and the functions
— A * . p)
B n) = T Pufny) Hiny) + EL O

(2;,9,)€82




A UNIFORM NUMERICAL METHOD
Supposing r > m, s > n, we have:
G155 0) = [[| Pulx ) By 3) gy (5, 9) di dy

mon 6a+bP2’ (x, y) aT+S—a-b——2
= z Z [ 8x“]6y” axr—a—l 3ys—q§—1 (x’ y)]

o

=0} b=0

2

o

m 8a+"P, (x y) ar+s a—n— 290
;)[ anay 8x'“18ys"1(x y)]

Q

ot

o [OMPy(x, y) et R
- z [ 3xm73yb dxT—m=1 gys—v-1 (x, y)]

ot

. 8’+3_1’—‘1—2q)(x, y)
+ az;q [ dxT—P-1 gys—a-1 ]Xij s

and further

ff Dol 3) g ays a ra s@dedy = Y GG s 9)

(z;,¥;)€0

+ ffg (X*; X)'\ (y*;-‘y)u a(x y) (P( y) dx dy

3. CuBATURE ForRMULA
Taking in (5)
x¥ =dy, y¥=by,, A=r, p=s, m<r, n<s,
we obtain

[[onacdy=F@ = ¥ 40Gjirs )

(®;,v;)€82

+ [ Phx ) g g (5, 9) e
where

gy (@2 — a)= (b, — b))t orts—eig
azo bzo r — a)! (s — B! oxr—o-t gys—d-1 (@, by)

-1 oby (a — g gr-e- 1
[CED at anl Y

a=0 vt

s§—1 a. - O
_ 2 (b2 _ bl)s b o3 b lCP
:_é‘;) ‘[11 (s — b)! oy=1 (x, by) dx.
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Denote now

Ap) = [| Bulx ) g (5,9) dx dy. ®

We shall prove that we can choose the coefficients a, so that %(¢) is, in
absolute value, sufficiently small; then

[ o dedy =F@)— T 4iiiirs o) ©)

(x;,v;)€80

can be considered as an approximate cubature formula for functions ¢(x, y)
on Q, with the remainder given by (8). The following theorem justifies it:

THEOREM. If | 8™ 3¢/ox™0y® | << M in £, then we can choose D, i.e.,
the coefficients af,, so that

| R(@)l < AR* + KDY, ¢ =min(m + 1,n+1).
' Proof. Denoting
Ly =lan+ @ — Dha + k] X [b + (G — Dk, by -+ jkl,

we have
(Al <M Y [ 190x ) dx dy.

(. v50e0 “" 1y
Notice that in ;; we have

(@ — x)" (by — y)®

r! S! H*l(x9 y)°

DL(x,¥) = Y Y Punx, ¥) Huolx, ») +

u>i v>j

Put now

Qii(x’ y) = Z Z Puv(x’ y) H;v(x’ y)

u>t v>j

It is obvious that, in I,;, Q,; is a polynomial of degree m in x and »n in y,
and that, given the P;;, the Q,; can immediately be calculated. Conversely,
if the Q,; are given, one can easily calculate recursively the P;; ; namely we
have:

Pslsz = Qsls2 )

-1
Psisy = Ospeivs, — 2 Psi1.5,»
=0

i—1 j—1

Ps isyi = Ospminsyi — 2. 2 Psy_t.5,-¢ -

i1=0 t=0
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Choose now the Q;; so that the function @7’(x, y) and all its derivatives up
to the mth in x and the nth in y are zero at a point (£, n) € I; . It follows
then that for (x, y) e I;,
| BL(x, )| = O(A® + k)Y, a =min(m + 1,n + 1),
It follows that

HI | BL(x, )| dx dy = O((K* + k2)§(a+2))’
and
A(p) = O((h? + k?)19) (10)

is the global error for the formula (9). But if in the calculation of F(p)
there is an error of order O((h* + k%)), then obviously the global error will
be of order min(a, b).

4. INTERPOLATION AND NUMERICAL DIFFERENTIATION FORMULAS

We return now to (5), and take r > A = m, s > p > n. Take also instead
of §, one of the domains £,*. We obtain:

J‘f 2 (x )ﬂd d
M0 Y) G gye X 4
L. ar+s—/\—u—2(P " "
= Y GRS @)+ Ganule) + T gt (x*, ¥,

(2;,9;)882,%

where

A
_ “ (x* _ x)A—a (y* . y)u—b ar+s—a—b—2(p
Gorulp) = ago bgﬂ [ * — a)! (@ = b)! axT—a1 gys-b-1 ]A .

&

A [ (x* - x),\—a ar+s—a—u—2(P

Sl A—a! oxrotoyetly |

. i [ (y* —_ y)u—b ar+8——/\—b—~2(p ]X (11)

= (” —_ b)! ax'r—-A—l ays—b—l

(11

As before, we can choose the polynomial P;;, i.e., the coefficients a‘;q s
so that

| II., 815 9) g (1, 9)| = OGH* + k™™, @ = minGm + 1, + 1)
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and obtain the approximate equality

or+s—A— u~—2(P
ax’r+)\ —1 ays——-u—l

(x* *) =~ — Z z1b°‘(i> ]s r,s; (P) + ga.hu((p)' (12)

(g, Y;)€80%

If r=A+41, s=p+ 1, we obviously obtain an interpolation formula,
while for r > A 4+ 1, s > p + 1, this is a numerical differentiation formula.
This formula can be written in another form:

au+v(;0
ox¥ oy®

oy ~— Y PCim+Ln+ 10 + Yonun-olp),

(2,060

from which we obtain

au-l-v(p % %
B gy &)
)

a=1

[ S G imtLnt o)+ 9 m_w(qo)] 13)

(a:i,yj)E.Q*

m»—‘

5. APPLICATION TO THE NUMERICAL INTEGRATION OF A CLASS OF PARTIAL
DIFFERENTIAL EQUATIONS

Consider the equation

grAn—r—ig
Lop= Y aux)) X gyt = f(x, y), (14

PLM AN
where a,, are functions in %(£2), such that
App =1, @y = a;, =0, i<<m, j<mn,

and the associated polynomials

Pz‘j(x, y) = Z 2 am(xl ’ y]) (xz X) (y’ — y)q

p=0 q=0 q!

m n

. u (xz x) (yJ _ y)q
B Eo qz—:o @ p! q!
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With this notation, we obtain from (1), where we take r = m 4 1,
s=n-+1:

grini2g
_U Pi(x, y) Hifx, y) T gyt dx dy

_ ”i i s[ aa+bPﬁ 3m+n—a—b(P ] _ [6a+bPij 3m+n-a—b¢ ]
( ox® @yb oxm—ae ayn——b A oxa 3yb oxm—a ayn—b Y

a=0 b=0

3a+bP am+n—~a~b
- [ ox® ayb oxm—a ayn b z + (‘S’p(;o)(xz s J’a)
= Tile) + (Lo)x:, y), (15)

the functional 7; being defined by (15).
On the other hand we have, for x* = Xn41s ¥ = YNt

(xN1+1 - x)m—/\ (yNz-H * y)n—u 6m+n+2()v
H o (m — A)! (n — !  oxmil gyntl dx dy

1
Ny+1,Np+1

a/\-HL

oxt ByE 8y” (x XNy+1 yN2+1) + %\u(‘P),

where

A ",
= c (xN1+1 —' x)m A-e (yN1+1 — y)n—u—b om+'ﬂ—a—b¢
Hulp) = Z z [ m— 2 —a)! (n— p— b Oxm=a gyn—b ]

a=0 b=0 Ay

L f [ ey
m—A—a)! oxmegy

a=0

_ Z [(yzvm — et gty ]
=0 (n - M — b)' ox* aym—b Xy )

If we consider the function:

WM(X, y) = Z za(xa ») HJ(X »
z<N1.a<N2
_ A — o
+ (xN1+1 x) (yNz+1 y) H*(x, y), (16)

Al w!
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the o}, being constants to be determined, we have

3m+n+2(p
ﬂg ¥hulx, ) D gyt dx dy

1 -
N1+1,N2+1

i 6/\+u
= X 0@, ) + o G s P + Aue) (D)
igNy

i<N,

where:
i) = #u(®) + 0T i) (18)

The functionals 5%, and Z; involve only values of ¢ and its derivatives
up to the (m + n)th order, taken only on the sides x =a; and y = b,
of £, and at points (x;,y;) € @2, withi < N;,j < N,.

Taking into account (14), we obtain from (17):

oA tre gmint2g
P s - W, (5, ) e @ g d
6)6)‘ ayu ( Ni+1 yN2+1) fJ‘Q}ql.,.l,NzH A ( y) axm+1 6y"+1 'y
- Z Giitf(xz s y:l) - }:\u((P)
iNy
i<,

We will prove now that we can choose the coefficients %, so that

¥ TP v dy = O + k. (1
I 1 3) e e X dy = O + K™, (19)

Ny +1,Ng+1
With that choice, the equalities (A =0, 1,...,m — Lp =0,1,..,n — 1)

ortre i
T Cmes ) 2 = X olfGi,p) = Sule) Q)

<N,
I<Ny

will give approximate numerical values of the derivatives of ¢ in
(*n 415 Yv,41)- The following theorem states the situation more precisely;
for the sake of simplicity, we take A = k.

THEOREM. If
(@) pe@mnmiQ),
(b) the coefficients a, (£, n) € €(£),
(c) the constants o}} are chosen so that

':p;\u(xi s ya) = 0’ (21)
d MW <1,
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where M is the least upper bound of all the derivatives of P;; in 2, and

. N - N Nk
W=V +Vs, Vy = PV V2_2max( AT )’ 22)
then

A __ JA 72—
i Nl—z Ng—j I K [(l + 1) l ] [(.] + B ] ] h,H_u (23)
K being a constant satisfying
K> 1/(1 — MW). 239

Proof. Taking in 21) i = N, + 1, or j = N, 4 1, we obtain:

Ni+i,J . N,
o 1+8.7 O_‘t +1 — 0,

Au Y
and, fori = N, ,j = N,,

NiNy Ati
ot =~

which is in accordance with (23). Using induction suppose now that (23)

is satisfied for i <'s, j < t; we will prove that (23) is true also for i = s,
Jj = t. To this end, consider:

Ni—s,Ny—¢ Ny—i,Ny—i
W wpms s Yapet) = o "2 1N o TP (XN s Yg—t)
i<s
i<t

(Cenpar = Xni-s)® (PNers — Yrpd)*
+ 1 N 1 2 o 2 =0,

which can also be written as

— 3 o Nl—' Mot = =Y o er Ned[p Ny—i, Ng—i(XNy—s » VNg—t) — 1]

i<s igs
it Jgt
A

AT !
It is easy to see that

Y=Y+ X + ¥ -2,

igs i=3s igs—1 igs igs—1
igt j=t it J<t -1 igt—1
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and, by means of analogs of (24), one gets:

> Uﬁl—i’Nrj[PNl-i,Nz—j(xzvl_s—l > YNp—t) — 1]

A
i<s—1 igs—1
i<t i<t
S'\(t + l)u Atu
AT ! e,
H I.L.
Y oot = — Y g TIPy i (XNs s YNyten) — 1]
ig<s s
j<t—1 igt—1
- .____.(S + l)l\_ﬁ h/\+u
Al ! ?
!
Ny—%, Ng—j —4, Ng—j
Z U;\ul o = Z U;Vul nhe ][PNl—i,Ng-—j(le—s——l s yNz—t—l) — 1]
igs—1 ig<s—1
i<t—1 i<t—1
A
— § tL_L_ hAtu,
Al p!
It follows that
O_;Vl—s,Nz—t - z U;"l"i,Nz—j ( 82PN1—i,Nz-j)* 42
u idon ™ ox 0y
igt—-1
. oP VK
Ny~8,Ng—7 Ny—8,Ng—j
-l (g
-1
. APy, s *
Ny—¢,No—1 N1—%,Ng-¢
e (e’
is—1
__+_ [(s + 1)/‘ _ S/\][(t + l)u - tu] h,\+u
Al p!

(the asterisk means that the partial derivative is taken at a suitable point
of £2). Majorizing the o’s on the right-hand side of the above equality by
means of (23), we obtain:

l U;{:.—S,Nz—t ] < [(S + l))‘ — S/\][(t + 1)“ — tu] h,\+u

Al !

. MEKhe L T [G+ 1D — f,][ffﬁ D~ 4
igt-1

+ 3 [(s + 10" *;'\!][’ij!'—!- -,

-2 [G+ 1 — ;*!][;t!+ 1 — #4] h]
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< [(s + D' — s + D* —£4] 5,

Al p!
sAtn
+ MKW [ T
[(s + 1)* — s~ S 4 D# — t#]
T Al h+ Xl A,
Taking into account (22), we get:
SR s et A
VIO s w s prn T
A A uo__ fu
V!
SHE A+ D =] i <y [+ DV = NG+ D — ],
Al ! St Al p! ’

and analogous inequalities. With this, the conclusion (23) follows.

We can finally prove the following

THEOREM. If

(@) the coefficients a,(x, y) are continuous in the domain S2;
(b) forallu <m+4 1l,v<n+1:

ot vPii(x’ y)

ox* oy” <M

and

97

(© ¢ is a solution of (14), having all its partial derivatives up to the
mth in x and the nth in y bounded, then the error (19) in the computation of

u and its partial derivatives up to the (m — )th in x and the (n — Dth in y is

o(h).
Proof. Obviously, since

am+n+2(p

oxm+1 ayﬂ+1 < '%’

am+n+2q)

I W ) g g A |<a2f ¥, 9l ds
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also, since Y’,\u(le_,- s ¥n i) = 0, taking into account hypothesis (b) and
the estimate (23), we have

sh1gn s — 1)

| Pl »)l < ( A—Dia! Al (p — 1! )hHu

30 T G+ 1 = PG+ D — e e

tigs
i<t
But
sz\—ltu st\tu—l
( O=Dipl T A =D ) He = o)
and

Toap B G+ D= PG + 1 — jo] e

S
A D+,
D
i<s
it

so that the conclusion of the theorem follows immediately.

Remarks. (1) It is obvious that by this method the values of ¢ can be
calculated at all points of £, provided that ¢ and its partial derivatives are
known on the sides x =g, and y = b, .

(2) The method of numerical integration given in the last sections
can be useful when one has to integrate a large number of equations (14)
with the same left-hand side, because the coefficients o,, do not depend on
the right-hand side of (14). A computer will have to compute these coefficients
just once for all of the equations.
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