On a Uniform Method for Integration, Differentiation and Interpolation with Applications to the Numerical Solution of a Class of Partial Differential Equations

Adolf Haimovici

Seminarul Matematic, Universitatea "Al. I. Cuza," 6600 Iaşi, Rumania

Communicated by I. J. Schoenberg
Received October 1, 1976

Using a method analogous to that given in [1], we establish elementary analytical equalities giving rise to some useful applications; among them a method for the numerical integration of some partial differential equations.

1

Let Ω be the rectangle $\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right]$, and

$$
\begin{aligned}
x_{i}=a_{1}+i h, & y_{j} & =b_{1}+j k, \\
h=\left(a_{2}-a_{1}\right) /\left(S_{1}+1\right), & k & =\left(b_{2}-b_{1}\right) /\left(S_{2}+1\right) .
\end{aligned}
$$

Each point $\left(x^{*}, y^{*}\right) \in \Omega$ divides Ω into four subdomains (rectangles):

$$
\begin{array}{ll}
\Omega_{*}^{1}=\left\{(x, y) \in \Omega ; x<x^{*}, y<y^{*}\right\}, & \Omega_{*}^{2}=\left\{(x, y) \in \Omega ; x>x^{*}, y<y^{*}\right\} \\
\Omega_{*}^{3}=\left\{(x, y) \in \Omega ; x>x^{*}, y>y^{*}\right\}, & \Omega_{*}^{4}=\left\{(x, y) \in \Omega ; x<x^{*}, y>y^{*}\right\} .
\end{array}
$$

We shall denote also by $\Omega_{i j}^{\alpha}(\alpha=1,2,3,4)$ the four rectangles analogous to the above ones, obtained by dividing Ω by means of the point (x_{i}, y_{j}).

Finally, let

$$
\begin{aligned}
& A_{1}=\left(a_{1}, b_{1}\right), \quad A_{2}=\left(a_{2}, b_{1}\right), \quad A_{3}=\left(a_{2}, b_{2}\right), \quad A_{4}=\left(a_{1}, b_{2}\right), \\
& X_{1 i}=X_{2 i}=\left(x_{i}, b_{1}\right), \quad X_{3 i}=X_{4 i}=\left(x_{i}, b_{2}\right), \\
& Y_{1 i}=Y_{4 i}=\left(a_{1}, y_{i}\right), \quad Y_{2 j}=Y_{3 j}=\left(a_{2}, y_{j}\right), \quad X_{i j}=\left(x_{i}, y_{j}\right), \\
& H_{i j}^{1}(x, y)=H\left(x_{i}-x\right) H\left(y_{j}-y\right), \quad(x, y) \in \Omega_{i j}^{1}, \\
& H_{i j}^{2}(x, y)=-H\left(x-x_{i}\right) H\left(y_{j}-y\right), \quad(x, y) \in \Omega_{i j}^{2}, \\
& H_{i j}^{3}(x, y)=H\left(x-x_{i}\right)\left(y-y_{j}\right), \quad(x, y) \in \Omega_{i j}^{3}, \\
& H_{i j}^{4}(x, y)=-H\left(x_{i}-x\right) H\left(y-y_{j}\right), \quad(x, y) \in \Omega_{i j}^{4},
\end{aligned}
$$

H being the usual Heaviside function, and $\varphi \in \mathscr{C}^{r+s}(\Omega)$.

A. HAIMOVICI

Then, using integration by parts, we have:
(a) for $r>p, s>q$:

$$
\begin{align*}
\iint_{\Omega_{i j}^{\alpha}} & \frac{\left(x_{i}-x\right)^{p}}{p!} \frac{\left(y_{j}-y\right)^{q}}{q!} H_{i j}^{\alpha}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}} d x d y \\
= & \sum_{a=0}^{p} \sum_{b=0}^{q}\left[\frac{\left(x_{i}-x\right)^{p-a}}{(p-a)!} \frac{\left(y_{j}-y\right)^{q-b}}{(q-b)!} \frac{\partial^{r+s-a-b-2} \varphi}{\partial x^{r-a-1} \partial y^{s-b-1}}\right]_{A_{\alpha}} \\
& \quad-\sum_{a=0}^{p}\left[\frac{\left(x_{i}-x\right)^{p-a}}{(p-a)!} \frac{\partial^{r+s-q-a-2} \varphi}{\partial x^{r-a-1} \partial y^{s-q-1}}\right]_{Y_{\alpha j}} \\
& \quad-\sum_{b=0}^{q}\left[\frac{\left(y_{j}-y\right)^{q-b}}{(q-b)!} \frac{\partial^{r+s-p-b-2} \varphi}{\partial x^{r-p-1} \partial y^{s-b-1}}\right]_{X_{a i}}+\left[\frac{\partial^{r+s-p-q-2} \varphi}{\partial x^{r-p-1} \partial y^{s-q-1}}\right]_{X_{i j}} \tag{1}
\end{align*}
$$

(b) for $r=p, s=q$,

$$
\begin{align*}
& \iint_{\Omega_{i j}^{1}} \frac{\left(x_{i}-x\right)^{p}}{p!} \frac{\left(y_{j}-y\right)^{q}}{q!} H_{i j}^{1}(x, y) \frac{\partial^{p+q} \varphi}{\partial x^{p} \partial y^{q}} d x d y \\
& \quad= \sum_{a=0}^{p} \sum_{b=0}^{q} \frac{\left(x_{i}-a_{1}\right)^{p}}{p!} \frac{\left(y_{j}-b_{1}\right)^{q}}{q!} \frac{\partial^{p+q-a-b-2} \varphi}{\partial x^{p-a-1} \partial y^{q-b-1}}\left(a_{1}, b_{1}\right) \\
& \quad-\sum_{a=0}^{p-1} \int_{b_{1}}^{y_{j}} \frac{\left(x_{i}-a_{1}\right)^{p-a}}{(p-a)!} \frac{\partial^{p-a-1} \varphi}{\partial x^{p-a-1}}\left(a_{1}, y\right) d y \\
& \quad-\sum_{b=0}^{q-1} \int_{a_{1}}^{x_{i}} \frac{\left(y_{j}-b_{1}\right)^{q-b}}{(q-b)!} \frac{\partial^{q-b-1} \varphi}{\partial y^{q-b-1}}\left(x, b_{1}\right) d x+\iint_{\Omega_{i j}^{1}} \varphi(x, y) d x d y \tag{2}
\end{align*}
$$

Consider now the polynomials

$$
P_{i j}\left(x_{i}-x, y_{j}-y\right)=P_{i j}(x, y)=\sum_{p=0}^{m} \sum_{q=0}^{n} a_{p p}^{i j} \frac{\left(x_{i}-x\right)^{p}}{p!} \frac{\left(y_{j}-y\right)^{q}}{q!}
$$

and the functions

$$
\begin{equation*}
\Phi_{\lambda, \mu}^{\alpha}(x, y)=\sum_{\left(x_{i}, y_{j}\right) \in \Omega} P_{i j}(x, y) H_{i j}^{\alpha}(x, y)+\frac{\left(x^{*}-x\right)^{\lambda}}{\lambda!} \frac{\left(y^{*}-y\right)^{\mu}}{\mu!} \tag{3}
\end{equation*}
$$

Supposing $r>m, s>n$, we have:

$$
\begin{align*}
\psi^{\alpha}(i, j ; r, s ; \varphi)= & \iint_{\Omega} P_{i j}(x, y) H_{i j}^{\alpha}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}}(x, y) d x d y \\
= & \sum_{a=0}^{m} \sum_{b=0}^{n}\left[\frac{\partial^{\alpha+b} P_{i j}(x, y)}{\partial x^{a} \partial y^{b}} \frac{\partial^{r+s-a-b-2} \varphi}{\partial x^{r-a-1} \partial y^{s-b-1}}(x, y)\right]_{A_{\alpha}} \\
& -\sum_{a=0}^{m}\left[\frac{\partial^{a+n} P_{i j}(x, y)}{\partial x^{a} \partial y^{n}} \frac{\partial^{r+s-a-n-2} \varphi}{\partial x^{r-a-1} \partial y^{s-n-1}}(x, y)\right]_{Y_{\alpha i}} \\
& -\sum_{b=0}^{n}\left[\frac{\partial^{m+b} P_{i j}(x, y)}{\partial x^{m} \partial y^{b}} \frac{\partial^{r+s-m-b-2} \varphi}{\partial x^{r-m-1} \partial y^{s-b-1}}(x, y)\right]_{X_{\alpha i}} \\
& +a_{y q}^{i j}\left[\frac{\partial^{r+s-p-q-2} \varphi(x, y)}{\partial x^{r-p-1} \partial y^{s-q-1}}\right]_{X_{i j}}, \tag{4}
\end{align*}
$$

and further

$$
\begin{align*}
& \iint_{\Omega} \Phi_{\lambda \mu}^{\alpha}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}}(x, y) d x d y=\sum_{\left(x_{i}, y_{j} \in \in \Omega\right.} \psi^{\alpha}(i, j ; r, s ; \varphi) \\
& \quad+\iint_{\Omega} \frac{\left(x^{*}-x\right)^{\lambda}}{\lambda!} \frac{\left(y^{*}-y\right)^{\mu}}{\mu!} H_{x}{ }^{\alpha}(x, y) \frac{\partial^{r+s} \varphi(x, y)}{\partial x^{r} \partial y^{s}} d x d y . \tag{5}
\end{align*}
$$

3. Cubature Formula

Taking in (5)

$$
x^{*}=a_{2}, \quad y^{*}=b_{2}, \quad \lambda=r, \quad \mu=s, \quad m<r, \quad n<s,
$$

we obtain

$$
\begin{align*}
\iint_{\Omega} \varphi(x, y) d x d y= & \mathscr{F}(\varphi)-\sum_{\left(x_{i}, y_{j}\right) \in \Omega} \psi^{(1)}(i, j ; r, s ; \varphi) \\
& +\iint_{\Omega} \Phi_{\lambda \mu}^{1}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}}(x, y) d x d y \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
\mathscr{F}(\varphi)= & \sum_{a=0}^{r-1} \sum_{b=0}^{s-1} \frac{\left(a_{2}-a_{1}\right)^{r-a}}{(r-a)!} \frac{\left(b_{2}-b_{1}\right)^{s-b}}{(s-b)!} \frac{\partial^{r+s-a-b-2} \varphi}{\partial x^{r-a-1} \partial y^{s-b-1}}\left(a_{1}, b_{1}\right) \\
& -\sum_{a=0}^{r-1} \int_{b_{1}}^{b_{2}} \frac{\left(a_{2}-a_{1}\right)^{r-a}}{(r-a)!} \frac{\partial^{r-a-1} \varphi}{\partial x^{r-a-1}}\left(a_{1}, y\right) d y \\
& -\sum_{b=0}^{s-1} \int_{a_{1}}^{a_{2}} \frac{\left(b_{2}-b_{1}\right)^{s-b}}{(s-b)!} \frac{\partial^{s-b-1} \varphi}{\partial y^{s-b-1}}\left(x, b_{1}\right) d x . \tag{7}
\end{align*}
$$

Denote now

$$
\begin{equation*}
\mathscr{R}(\varphi)=\iint_{\Omega} \Phi_{\lambda \mu}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}}(x, y) d x d y \tag{8}
\end{equation*}
$$

We shall prove that we can choose the coefficients $a_{p q}^{i j}$ so that $\mathscr{R}(\varphi)$ is, in absolute value, sufficiently small; then

$$
\begin{equation*}
\iint_{\Omega} \varphi(x, y) d x d y=\mathscr{F}(\varphi)-\sum_{\left(x_{i}, y_{j}\right) \in \Omega} \psi^{1}(i, j ; r, s ; \varphi) \tag{9}
\end{equation*}
$$

can be considered as an approximate cubature formula for functions $\varphi(x, y)$ on Ω, with the remainder given by (8). The following theorem justifies it:

Theorem. If $\left|\partial^{r+s} \varphi / \partial x^{r} \partial y^{s}\right| \leqslant M$ in Ω, then we can choose Φ^{1}, i.e., the coefficients $a_{p q}^{i j}$, so that

$$
|\mathscr{R}(\varphi)| \leqslant A\left(h^{2}+k^{2}\right)^{\frac{1}{2} t}, \quad t=\min (m+1, n+1) .
$$

Proof. Denoting

$$
I_{i j}=\left[a_{1}+(i-1) h, a_{1}+i h\right] \times\left[b_{1}+(j-1) k, b_{1}+j k\right],
$$

we have

$$
|\mathscr{R}(\varphi)| \leqslant M \sum_{\left(x_{i}, y_{j}\right) \in \Omega} \iint_{I_{i j}}\left|\Phi_{r, s}^{1}(x, y)\right| d x d y .
$$

Notice that in $I_{i j}$ we have

$$
\Phi_{\lambda \mu}^{1}(x, y)=\sum_{u>i} \sum_{v>j} P_{u v}(x, y) H_{u v}^{1}(x, y)+\frac{\left(a_{2}-x\right)^{r}}{r!} \frac{\left(b_{2}-y\right)^{s}}{s!} H_{*}^{1}(x, y) .
$$

Put now

$$
Q_{i j}(x, y)=\sum_{u>i} \sum_{v>j} P_{u v}(x, y) H_{u v}^{1}(x, y) .
$$

It is obvious that, in $I_{i j}, Q_{i j}$ is a polynomial of degree m in x and n in y, and that, given the $P_{i j}$, the $Q_{i j}$ can immediately be calculated. Conversely, if the $Q_{i j}$ are given, one can easily calculate recursively the $P_{i j}$; namely we have:

$$
\begin{aligned}
P_{S_{1} S_{2}} & =Q_{S_{1} S_{2}} \\
P_{S_{1}-i, S_{2}} & =Q_{s_{1}-i, S_{2}}-\sum_{l=0}^{i-1} P_{S_{1}-l, s_{2}} \\
P_{S_{1}-i, S_{2}-j} & =Q_{S_{1}-i, S_{2}-j}-\sum_{l=0}^{i-1} \sum_{t=0}^{j-1} P_{S_{1}-l, S_{2}-t}
\end{aligned}
$$

Choose now the $Q_{i j}$ so that the function $\Phi_{1}^{r s}(x, y)$ and all its derivatives up to the m th in x and the nth in y are zero at a point $(\xi, \eta) \in I_{i j}$. It follows then that for $(x, y) \in I_{i j}$,

$$
\left|\Phi_{r s}^{1}(x, y)\right|=O\left(\left(h^{2}+k^{2}\right)^{\frac{1}{2} a}\right), \quad a=\min (m+1, n+1)
$$

It follows that

$$
\iint_{I_{i j}}\left|\Phi_{r s}^{1}(x, y)\right| d x d y=O\left(\left(k^{2}+k^{2}\right)^{\frac{1}{2}(a+2)}\right)
$$

and

$$
\begin{equation*}
\mathscr{R}(\varphi)=O\left(\left(h^{2}+k^{2}\right)^{\frac{1}{2} a}\right) \tag{10}
\end{equation*}
$$

is the global error for the formula (9). But if in the calculation of $\mathscr{F}(\varphi)$ there is an error of order $O\left(\left(h^{2}+k^{2}\right)^{\frac{1}{2} b}\right)$, then obviously the global error will be of order $\min (a, b)$.

4. Interpolation and Numerical Differentiation Formulas

We return now to (5), and take $r>\lambda \geqslant m, s>\mu \geqslant n$. Take also instead of Ω, one of the domains $\Omega_{*}{ }^{\alpha}$. We obtain:

$$
\begin{aligned}
\iint_{\Omega_{*}} & \Phi_{\lambda \mu}^{\alpha}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}} d x d y \\
& =\sum_{\left(x_{i}, y_{j}\right) \in \Omega_{*} \alpha} \psi^{\alpha}(i, j ; r, s ; \varphi)+\mathscr{G}_{\alpha, \lambda, \mu}(\varphi)+\frac{\partial^{r+s-\lambda-\mu-2} \varphi}{\partial x^{r-\lambda-1} \partial y^{s-\mu-1}}\left(x^{*}, y^{*}\right)
\end{aligned}
$$

where

$$
\begin{align*}
\mathscr{G}_{\alpha, \lambda, \mu}(\varphi)= & \sum_{a=0}^{\lambda} \sum_{b=0}^{\mu}\left[\frac{\left(x^{*}-x\right)^{\lambda-a}}{(\lambda-a)!} \frac{\left(y^{*}-y\right)^{\mu-b}}{(\mu-\ddot{b})!} \frac{\partial^{r+s-a-b-2} \varphi}{\partial x^{r-a-1} \partial y^{s-b-1}}\right]_{A_{\alpha^{*}}} \\
& -\sum_{a=0}^{\lambda}\left[\frac{\left(x^{*}-x\right)^{\lambda-a}}{(\lambda-a)!} \frac{\partial^{r+s-a-\mu-2} \varphi}{\partial x^{r-a-1} \partial y^{s-\mu-1}}\right]_{Y_{\alpha, j}} \\
& -\sum_{b=0}^{\mu}\left[\frac{\left(y^{*}-y\right)^{\mu-b}}{(\mu-b)!} \frac{\partial^{r+s-\lambda-b-2} \varphi}{\partial x^{r-\lambda-1} \partial y^{s-b-1}}\right]_{X_{\alpha i}} \tag{11}
\end{align*}
$$

As before, we can choose the polynomial $P_{i j}$, i.e., the coefficients $a_{p q}^{i j}$, so that

$$
\left|\iint_{\Omega_{x^{\alpha}}} \phi_{\lambda_{\mu}}^{1}(x, y) \frac{\partial^{r+s} \varphi}{\partial x^{r} \partial y^{s}}(x, y)\right|=O\left(\left(h^{2}+k^{2}\right)^{\frac{1}{2} a}\right), \quad a=\min (m+1, n+1)
$$

and obtain the approximate equality

$$
\begin{equation*}
\frac{\partial^{r+s-\lambda-\mu-2} \varphi}{\partial x^{r+\lambda-1} \partial y^{s-\mu-1}}\left(x^{*}, y^{*}\right) \simeq-\sum_{\left(x_{i}, y_{j}\right) \in \Omega_{*} \alpha} \psi^{\alpha}(i, j ; r, s ; \varphi)+\mathscr{G}_{\alpha, \lambda \mu}(\varphi) \tag{12}
\end{equation*}
$$

If $r=\lambda+1, s=\mu+1$, we obviously obtain an interpolation formula, while for $r>\lambda+1, s>\mu+1$, this is a numerical differentiation formula. This formula can be written in another form:

$$
\frac{\partial^{u+v} \varphi}{\partial x^{u} \partial y^{v}}\left(x^{*}, y^{*}\right) \simeq-\sum_{\left(x_{i}, y_{j}\right) \in \Omega_{*}} \psi^{\alpha}(i, j ; m+1, n+1 ; \varphi)+\mathscr{G}_{\alpha, m-u, n-v}(\varphi),
$$

from which we obtain

$$
\begin{align*}
& \frac{\partial^{u+v} \varphi}{\partial x^{u} \partial y^{v}}\left(x^{*}, y^{*}\right) \\
& \quad=-\frac{1}{4} \sum_{\alpha=1}^{4}\left[\sum_{\left(x_{i}, y_{j}\right) \in \Omega_{*} \alpha} \psi^{\alpha}(i, j ; m+1, n+1 ; \varphi)+\mathscr{G}_{\alpha, m-\mu, n-v}(\varphi)\right] . \tag{13}
\end{align*}
$$

5. Application to the Numerical Integration of a Class of Partial Differential Equations

Consider the equation

$$
\begin{equation*}
\mathscr{L}_{\varphi} \equiv \sum_{p \leqslant m, q \leqslant n} a_{p q}(x, y) \frac{\partial^{m+n-p-q} \varphi}{\partial x^{m-p} \partial y^{n-q}}=f(x, y) \tag{14}
\end{equation*}
$$

where $a_{p q}$ are functions in $\mathscr{C}(\Omega)$, such that

$$
a_{m n}=1, \quad a_{m, i}=a_{i n}=0, \quad i<m, \quad j<n
$$

and the associated polynomials

$$
\begin{aligned}
P_{i j}(x, y) & =\sum_{p=0}^{m} \sum_{q=0}^{n} a_{p q}\left(x_{i}, y_{j}\right) \frac{\left(x_{i}-x\right)^{p}}{p!} \frac{\left(y_{j}-y\right)^{q}}{q!} \\
& =\sum_{p=0}^{m} \sum_{q=0}^{n} a_{p q}^{i j} \frac{\left(x_{i}-x\right)^{p}}{p!} \frac{\left(y_{j}-y\right)^{a}}{q!}
\end{aligned}
$$

With this notation, we obtain from (1), where we take $r=m+1$, $s=n+1$:

$$
\begin{align*}
\iint_{S_{i j}^{1}} & P_{i j}(x, y) H_{i j}^{1}(x, y) \frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}} d x d y \\
\quad= & \sum_{a=0}^{m} \sum_{b=0}^{n}\left\{\left[\frac{\partial^{a+b} P_{i j}}{\partial x^{a} \partial y^{b}} \frac{\partial^{m+n-a-b} \varphi}{\partial x^{m-a} \partial y^{n-b}}\right]_{A_{1}}-\left[\frac{\partial^{a+b} P_{i j}}{\partial x^{a} \partial y^{b}} \frac{\partial^{m+n-a-b} \varphi}{\partial x^{m-a} \partial y^{n-b}}\right]_{Y_{1 j}}\right. \\
& \left.-\left[\frac{\partial^{a+b} P_{i j}}{\partial x^{a} \partial y^{b}} \frac{\partial^{m+n-a-b} \varphi}{\partial x^{m-a} \partial y^{n-b}}\right]_{X_{1 i}}\right\}+\left(\mathscr{L}_{\varphi}\right)\left(x_{i}, y_{j}\right) \\
& =\mathscr{T}_{i j}(\varphi)+(\mathscr{L} \varphi)\left(x_{i}, y_{j}\right) \tag{15}
\end{align*}
$$

the functional $\mathscr{T}_{i j}$ being defined by (15).
On the other hand we have, for $x^{*}=x_{N_{1}+1}, y^{*}=y_{N_{2}+1}$:

$$
\begin{aligned}
& \iint_{\Omega_{N_{1}+1, N_{2}+1}^{1}} \frac{\left(x_{N_{1}+1}-x\right)^{m-\lambda}}{(m-\lambda)!} \frac{\left(y_{N_{2}+1}-y\right)^{n-\mu}}{(n-\mu)!} \frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}} d x d y \\
& \quad=\frac{\partial^{\lambda+u} \varphi}{\partial x^{\lambda} \partial y^{\mu}}\left(x_{N_{1}+1}, y_{N_{2}+1}\right)+\mathscr{H}_{\lambda \mu}(\varphi)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathscr{H}_{\lambda \mu}(\varphi)= & \sum_{a=0}^{\lambda} \sum_{b=0}^{\mu}\left[\frac{\left(x_{N_{1}+1}-x\right)^{m-\lambda-a}}{(m-\lambda-a)!} \frac{\left(y_{N_{1+1}}-y\right)^{n-\mu-b}}{(n-\mu-b)!} \frac{\partial^{m+n-a-b} \varphi}{\partial x^{m-a} \partial y^{n-b}}\right]_{A_{1}} \\
& -\sum_{a=0}^{\lambda}\left[\frac{\left(x_{N_{1}+1}-x\right)^{m-\lambda-a}}{(m-\lambda-a)!} \frac{\partial^{m+\mu-a} \varphi}{\partial x^{m-a} \partial y^{\mu}}\right]_{Y_{1 j}} \\
& -\sum_{b=0}^{u}\left[\frac{\left(y_{N_{2}+1}-y\right)^{n-\mu-b}}{(n-\mu-b)!} \frac{\partial^{n+\lambda-b} \varphi}{\partial x^{\lambda} \partial y^{m-b}}\right]_{X_{1 i}} .
\end{aligned}
$$

If we consider the function:

$$
\begin{align*}
\Psi_{\lambda \mu}(x, y)= & \sum_{i \leqslant N_{1}, j \leqslant N_{2}} \sigma_{\lambda \mu}^{i j} P_{i j}(x, y) H_{i j}^{1}(x, y) \\
& +\frac{\left(x_{N_{1}+1}-x\right)^{\lambda}}{\lambda!} \frac{\left(y_{N_{2}+1}-y\right)^{\mu}}{\mu!} H_{*}(x, y), \tag{16}
\end{align*}
$$

the $\sigma_{p q}^{i j}$ being constants to be determined, we have

$$
\begin{align*}
& \iint_{\Omega_{N_{1}+1, N_{2}+1}^{1}} \Psi_{\lambda \mu}(x, y) \frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}} d x d y \\
& \quad=\sum_{\substack{i \leqslant N_{1} \\
j \leqslant N_{2}}} \sigma_{\lambda u}^{i j}(\mathscr{L} u)\left(x_{i}, y_{j}\right)+\frac{\partial^{\lambda+\mu} \varphi}{\partial x^{\lambda} \partial y^{\mu}}\left(x_{N_{1}+1}, y_{N_{2}+1}\right)+\mathscr{J}_{\lambda \mu}(\varphi) \tag{17}
\end{align*}
$$

where:

$$
\begin{equation*}
\mathscr{J}_{\lambda \mu}(\varphi)=\mathscr{H}_{\lambda \mu}(\varphi)+\sigma_{\lambda \mu}^{i j} \mathscr{T}_{i j}(\varphi) . \tag{18}
\end{equation*}
$$

The functionals $\mathscr{H}_{\lambda \mu}$ and $\mathscr{T}_{i j}$ involve only values of φ and its derivatives up to the $(m+n)$ th order, taken only on the sides $x=a_{1}$ and $y=b_{1}$ of Ω, and at points $\left(x_{i}, y_{j}\right) \in \Omega$, with $i \leqslant N_{1}, j \leqslant N_{2}$.

Taking into account (14), we obtain from (17):

$$
\begin{aligned}
\frac{\partial^{\lambda+\mu} \varphi}{\partial x^{\lambda} \partial y^{\mu}}\left(x_{N_{1}+1}, y_{N_{2}+1}\right)= & \iint_{S_{N_{1}+1, N_{2}+1}^{1}} \Psi_{\lambda \mu}(x, y) \frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}} d x d y \\
& -\sum_{\substack{i \leqslant N_{1} \\
j \leqslant N_{2}}} \sigma_{\lambda \mu}^{i j} f\left(x_{i}, y_{j}\right)-\mathscr{J}_{\lambda \mu}(\varphi)
\end{aligned}
$$

We will prove now that we can choose the coefficients $\sigma_{\lambda \mu}^{i j}$ so that

$$
\begin{equation*}
\iint_{\Omega_{N_{1}+1, N_{2}+1}} \Psi_{\lambda \mu}(x, y) \frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}} d x d y=O\left(\left(h^{2}+k^{2}\right)^{1 / 2}\right) \tag{19}
\end{equation*}
$$

With that choice, the equalities $(\lambda=0,1, \ldots, m-1, \mu=0,1, \ldots, n-1)$

$$
\begin{equation*}
\frac{\partial^{\lambda+\mu} \varphi}{\partial x^{\lambda} \partial y^{\mu}}\left(x_{N_{1}+1}, y_{N_{2}+1}\right) \simeq-\sum_{\substack{i \leqslant N_{1} \\ j \leqslant N_{2}}} \sigma_{\lambda \mu}^{i j} f\left(x_{i}, y_{j}\right)-\mathscr{J}_{\lambda \mu}(\varphi) \tag{20}
\end{equation*}
$$

will give approximate numerical values of the derivatives of φ in ($x_{N_{1}+1}, y_{N_{2}+1}$). The following theorem states the situation more precisely; for the sake of simplicity, we take $h=k$.

Theorem. If

(a) $\varphi \in \mathscr{C}^{m+n+2}(\Omega)$,
(b) the coefficients $a_{p q}(\xi, \eta) \in \mathscr{C}(\Omega)$,
(c) the constants $\sigma_{i j}^{\lambda \mu}$ are chosen so that

$$
\begin{equation*}
\Psi_{\lambda \mu}\left(x_{i}, y_{j}\right)=0 \tag{21}
\end{equation*}
$$

(d) $M W<1$,
where M is the least upper bound of all the derivatives of $P_{i j}$ in Ω, and

$$
\begin{equation*}
W=V_{1}+V_{2}, \quad V_{1}=\frac{N_{1} N_{2} h^{2}}{\lambda \mu}, \quad V_{2}=2 \max \left(\frac{N_{1} h}{\lambda}, \frac{N_{2} k}{\mu}\right) \tag{22}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}\right| \leqslant K \frac{\left[(i+1)^{\lambda}-i^{\lambda}\right]}{\lambda!} \frac{\left[(j+1)^{\mu}-j^{\mu}\right]}{\mu!} h^{\lambda+\mu}, \tag{23}
\end{equation*}
$$

K being a constant satisfying

$$
K>1 /(1-M W)
$$

Proof. Taking in (21) $i=N_{1}+1$, or $j=N_{2}+1$, we obtain:

$$
\sigma_{\lambda \mu}^{N_{1}+i, j}=\sigma_{\lambda \mu}^{i, N_{2}+1}=0
$$

and, for $i=N_{1}, j=N_{2}$,

$$
\sigma_{\lambda \mu}^{N_{1} N_{2}}=-h^{\lambda+\mu} / \lambda!\mu!
$$

which is in accordance with (23). Using induction suppose now that (23) is satisfied for $i \leqslant s, j<t$; we will prove that (23) is true also for $i=s$, $j=t$. To this end, consider:

$$
\begin{aligned}
\Psi_{\lambda \mu}\left(x_{N_{1}-s}, y_{N_{2}-t}\right)= & \sigma_{\lambda \mu}^{N_{1}-s, N_{2}-t}+\sum_{\substack{i \leq s \\
j<t}} \sigma_{\lambda_{\mu}}^{N_{1}-i, N_{2}-j} P_{N_{1}-i, N_{2}-j}\left(x_{N_{1}-s}, y_{N_{2}-t}\right) \\
& +\frac{\left(x_{N_{1}+1}-x_{N_{1}-s}\right)^{\lambda}}{\lambda!} \frac{\left(y_{N_{2}+1}-y_{N_{2}-t}\right)^{\mu}}{\mu!}=0
\end{aligned}
$$

which can also be written as

$$
\begin{align*}
-\sum_{\substack{i \leqslant s \\
j \leqslant t}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}= & \sum_{\substack{i \leqslant s \\
j \leqslant t}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-s}\left[P_{N_{1}-i, N_{2}-j}\left(x_{N_{1}-s}, y_{N_{2}-t}\right)-1\right] \\
& +\frac{(s+1)^{\lambda}(t+1)^{\mu}}{\lambda!\mu!} h^{\lambda+\mu} \tag{24}
\end{align*}
$$

It is easy to see that

$$
\sum_{\substack{i \leqslant s \\ j \leqslant t}}=\sum_{\substack{i=s \\ j=t}}+\sum_{\substack{i \leqslant s-1 \\ j \leqslant t}}+\sum_{\substack{i \leqslant s \\ j \leqslant t-1}}-\sum_{\substack{i \leqslant s i s-1 \\ j \leqslant t-1}}
$$

and, by means of analogs of (24), one gets:

$$
\begin{aligned}
\sum_{\substack{i \leqslant s-1 \\
j \leqslant t}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}= & -\sum_{\substack{i \leqslant s-1 \\
j \leqslant t}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}\left[P_{N_{1}-i, N_{2}-j}\left(x_{N_{1}-s-1}, y_{N_{2}-t}\right)-1\right] \\
& -\frac{s^{\lambda}(t+1)^{\mu}}{\lambda!\mu!} h^{\lambda+\mu}, \\
\sum_{\substack{i \leqslant s \\
j<t-1}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}= & -\sum_{\substack{i \leqslant s \\
j \leqslant t-1}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}\left[P_{N_{1}-i, N_{2}-j}\left(x_{N_{1}-s}, y_{N_{2}-t-1}\right)-1\right] \\
& -\frac{(s+1)^{\lambda} t^{\mu}}{\lambda!\mu!} h^{\lambda+\mu}, \\
\sum_{\substack{i \leqslant s-1 \\
j \leqslant t-1}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}= & -\sum_{\substack{i \leqslant s-1 \\
j \leqslant t-1}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}\left[P_{N_{1}-i, N_{2}-j}\left(x_{N_{1}-s-1}, y_{N_{2}-t-1}\right)-1\right] \\
& -\frac{s^{\lambda} t^{\mu}}{\lambda!\mu!} h^{\lambda+\mu} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sigma_{\lambda \mu}^{N_{1}-s, N_{2}-t}= & \sum_{\substack{i \leqslant s-1 \\
j \leqslant t-1}} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-j}\left(\frac{\partial^{2} P_{N_{1}-i, N_{2}-j}}{\partial x \partial y}\right)^{*} h^{2} \\
& +\sum_{j \leqslant t-1} \sigma_{\lambda \mu}^{N_{1}-s, N_{2}-j}\left(\frac{\partial P_{N_{1}-s, N_{2}-j}}{\partial x}\right)^{*} h \\
& +\sum_{i \leqslant s-1} \sigma_{\lambda \mu}^{N_{1}-i, N_{2}-t}\left(\frac{\partial P_{N_{1}-i, N_{2}-t}}{\partial y}\right)^{*} h \\
& +\frac{\left[(s+1)^{\lambda}-s^{\lambda}\right]\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h^{\lambda+\mu}
\end{aligned}
$$

(the asterisk means that the partial derivative is taken at a suitable point of Ω). Majorizing the σ 's on the right-hand side of the above equality by means of (23), we obtain:

$$
\begin{aligned}
\left|\sigma_{\lambda \mu}^{N_{1}-s, N_{2}-t}\right| \leqslant & \frac{\left[(s+1)^{\lambda}-s^{\lambda}\right]\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h^{\lambda+\mu} \\
& +M K h^{\lambda+\mu}\left[\sum_{\substack{i \leqslant s-1 \\
j \leqslant t-1}} \frac{\left[(i+1)^{\lambda}-i^{\lambda}\right]\left[(j+1)^{\mu}-j^{\mu}\right]}{\lambda!\mu!} h^{2}\right. \\
& +\sum_{j \leqslant t-1} \frac{\left[(s+1)^{\lambda}-s^{\lambda}\right]\left[(j+1)^{\mu}-j^{\mu}\right]}{\lambda!\mu!} h \\
& \left.+\sum_{i \leqslant s-1} \frac{\left[(i+1)^{\lambda}-i^{\lambda}\right]\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { A UNIFORM NUMERICAL METHOD } \\
& \leqslant \frac{\left[(s+1)^{\lambda}-s^{\lambda}\right]\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h^{\lambda+\mu} \\
& \\
& +M K h^{\lambda+\mu}\left[\frac{s^{\lambda} t^{\mu}}{\lambda!\mu!} h^{2}\right. \\
& \\
& \left.+\frac{\left[(s+1)^{\lambda}-s^{\lambda}\right] t^{\mu}}{\lambda!\mu!} h+\frac{s^{\lambda}\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h\right] .
\end{aligned}
$$

Taking into account (22), we get:

$$
\begin{aligned}
\frac{s^{\lambda} t^{\mu}}{\lambda!\mu!} h^{\lambda+\mu+2} & \leqslant V_{2} \frac{s^{\lambda-1} t^{\mu-1}}{(\lambda-1)!(\mu-1)!} h^{\lambda+\mu} \\
& \leqslant V_{2} \frac{\left[(s+1)^{\lambda}-s^{\lambda}\right]\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h^{\lambda+\mu}, \\
\frac{s^{\lambda}\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h^{\lambda+\mu+1} & \leqslant V_{1} \frac{\left[(s+1)^{\lambda}-s^{\lambda}\right]\left[(t+1)^{\mu}-t^{\mu}\right]}{\lambda!\mu!} h^{\lambda+\mu},
\end{aligned}
$$

and analogous inequalities. With this, the conclusion (23) follows.

6

We can finally prove the following
Theorem. If
(a) the coefficients $a_{p q}(x, y)$ are continuous in the domain Ω;
(b) for all $u \leqslant m+1, v \leqslant n+1$:

$$
\left|\frac{\partial^{u+v} P_{i j}(x, y)}{\partial x^{u} \partial y^{v}}\right| \leqslant M
$$

and
(c) φ is a solution of (14), having all its partial derivatives up to the mth in x and the nth in y bounded, then the error (19) in the computation of u and its partial derivatives up to the $(m-1)$ th in x and the $(n-1)$ th in y is $O(h)$.

Proof. Obviously, since

$$
\begin{gathered}
\left|\frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}}\right|
\end{gathered} \leqslant \mathscr{R}, \quad \begin{aligned}
\left|\iint_{I_{i j}} \Psi_{\lambda \mu}(x, y) \frac{\partial^{m+n+2} \varphi}{\partial x^{m+1} \partial y^{n+1}} d x d y\right| & \leqslant \mathscr{R} \iint_{I_{i j}}\left|\Psi_{\lambda \mu}(x, y)\right| d x d y
\end{aligned}
$$

also, since $\Psi_{\lambda \mu}\left(x_{N_{1}-i}, y_{N_{2}-j}\right)=0$, taking into account hypothesis (b) and the estimate (23), we have

$$
\begin{aligned}
\left|\Psi_{\lambda \mu}(x, y)\right| \leqslant & \left(\frac{s^{\lambda-1} t^{\mu}}{(\lambda-1)!\mu!}+\frac{s^{\lambda}(t-1)^{\mu}}{\lambda!(\mu-1)!}\right) h^{\lambda+\mu} \\
& +\frac{M K}{\lambda!\mu!} \sum_{\substack{i \leqslant 8 \\
j \leqslant t}}\left[\left[(i+1)^{\lambda}-i^{\lambda}\right]\left[(j+1)^{\mu}-j^{\mu}\right] h^{\lambda+\mu+1}\right.
\end{aligned}
$$

But

$$
\left(\frac{s^{\lambda-1} t^{\mu}}{(\lambda-1)!\mu!}+\frac{s^{\lambda} t^{\mu-1}}{\lambda!(\mu-1)!}\right) h^{\lambda+\mu}=O(h)
$$

and

$$
\begin{aligned}
& \frac{1}{\lambda!\mu!} \sum_{\substack{i \leqslant s \\
j \leqslant t}}\left[(i+1)^{\lambda}-i^{\lambda}\right]\left[(j+1)^{\mu}-j^{\mu}\right] h^{\lambda+\mu+1} \\
& \quad \leqslant \sum_{\substack{i \leqslant s \\
j \leqslant t}} \frac{(s+1)^{\lambda}(t+1)^{\mu}}{\lambda!\mu!} h^{\lambda+u+1}=O(h)
\end{aligned}
$$

so that the conclusion of the theorem follows immediately.
Remarks. (1) It is obvious that by this method the values of φ can be calculated at all points of Ω, provided that φ and its partial derivatives are known on the sides $x=a_{1}$ and $y=b_{1}$.
(2) The method of numerical integration given in the last sections can be useful when one has to integrate a large number of equations (14) with the same left-hand side, because the coefficients $\sigma_{\lambda \mu}$ do not depend on the right-hand side of (14). A computer will have to compute these coefficients just once for all of the equations.

Reference

1. A. Haimovicı, Sur une certaine approximation des distributions généralisant des formules d'intégration, de dérivation numérique et d'interpolation, Rev. Roumaine Math. Pures Appl., 15 (1970), 1415-1420.
